17EC42

## Fourth Semester B.E. Degree Examination, Feb./Mar. 2022 Signals and System

Time: 3 hrs .
Max. Marks: 100
Note: Answer any FIVE full questions, choosing ONE full question from each module.

## Module-1

1 a. Define signals. Explain briefly the classification of signals with expressions and waveforms.
(06 Marks)
b. Determine whether the following signals are energy or power signal and also find the energy or power of the signal.
i) $x(n)=\left\{\begin{array}{cc}n & 0 \leq n \leq 5 \\ 10-n & 5 \leq n \leq 10 \\ 0 & \text { otherwise }\end{array}\right.$
ii) $\mathrm{x}(\mathrm{t})=5 \cos (\pi \mathrm{t})-\infty<\mathrm{t}<\infty$.
(08 Marks)
c. A signal $x(t)$ is defined by
$x(t)=\left\{\begin{array}{cc}5-t & 4 \leq t \leq 5 \\ 1 & -4 \leq t \leq 4 \\ t+5 & -5 \leq t \leq-4 \\ 0 & \text { otherwise }\end{array}\right.$
Determine signal $y(t)=\frac{d x(t)}{d t}$. Also find the energy of signal $y(t)=\frac{d x(t)}{d t}$.
(06 Marks)

2 a. Explain the important elementary signals with suitable expressions and waveforms.
(05 Marks)
b. The systems given below have input $x(t)$ or $x(n)$ and output $y(t)$ or $y(n)$ respectively. Determine whether each of them is stable, causal, linear.
i) $\mathrm{y}(\mathrm{n})=\log _{10}(|\mathrm{x}(\mathrm{n})|)$
ii) $y(t)=\cos (x(t))$
iii) $\mathrm{y}(\mathrm{t})=\mathrm{x}\left(\frac{\mathrm{t}}{2}\right)$.
(09 Marks)
c. Determine whether the following signals are periodic. If so find their fundamental period.

$$
\text { i) } x(t)=\cos (2 t)+\sin (3 t)
$$

ii) $x(n)=\cos \left(\frac{7}{15} \pi n\right)$.
(06 Marks)

## Module-2

3 a. For an LTI system characterized by impulse response $h[n]=\beta^{n} u[n], 0<\beta<1$, find the output of the system for input $x[n]$ given by $x[n]=a^{n}[u[n]-u[n-10]]$.
(08 Marks)
b. State and prove the associative property and distributive properties of convolution integral.
(08 Marks)
c. Let the impulse response of a LTI system be $h(t)=\sigma(t-a)$. Determine the output of this system in response to any input $\mathrm{x}(\mathrm{t})$.
(04 Marks)

## OR

4
a. Convolute $\mathrm{x}(\mathrm{t})=\mathrm{u}(\mathrm{t})-\mathrm{u}(\mathrm{t}-2)$ with signal $\mathrm{h}(\mathrm{t})=\mathrm{u}(\mathrm{t}-1)-\mathrm{u}(\mathrm{t}-3)$.
(10 Marks)
b. Convolve $\mathrm{x}(\mathrm{n})=\{1,2,-\underset{\uparrow}{\mathrm{\imath}}, 1\}$ and $\mathrm{h}(\mathrm{n})=\{1,0,1\}$ using graphical method.
(05 Marks)
c. Derive the equation of convolution sum.
(05 Marks)

## Module-3

5 a. Determine whether the systems described by the following impulse responses are stable, causal and memoryless $\quad$ i) $h(n)=\left(\frac{1}{2}\right)^{n} u(n) \quad$ ii) $h(t)=e^{t} u(-1-t)$.
(08 Marks)
b. State linearity, time shift and convolution properties of Discrete Time Fourier Series.
(03 Marks)
c. Evaluate the Fourier series representation of the signal $x(t)=\sin (2 \pi t)+\cos (3 \pi t)$. Also sketch the magnitude and phàse spectra.
(09 Marks)

## OR

6 a. Consider the interconnection of LTI system depicted in Fig.Q6(a). The impulse response of each system is given by
(08 Marks)
$h_{1}(n)=u[n], h_{2}[n]=u[n+2]-u[n], h_{3}[n]=\delta[n-2], h_{4}[n]=\alpha^{n} u[n]$.


Find the impulse response of the overall system, $\mathrm{h}[\mathrm{n}]$.
(04 Marks)
b. Find the unit step response for the LTI system represented by the following responses
i) $h(n)=\left(\frac{1}{2}\right)^{n} u(n-2)$
ii) $h(t)=e^{-r t \mid}$.
c. Find the DTFS representation for $\mathrm{x}(\mathrm{n})=\left(\frac{\pi \mathrm{n}}{8}+\phi\right)$. Draw magnitude and phase.

## Module-4

7 a. State and prove the following properties of Discrete Time Fourier transform.
i) Time shift property
ii) Parseval's theorem.
(08 Marks)
b. Determine the time domain signal $\mathrm{X}(\mathrm{t})$ corresponding to $\mathrm{X}(\mathrm{j} \omega)=\frac{\mathrm{j} \omega+1}{(\mathrm{j} \omega+2)^{2}}$.
c. Evaluate the DTFT of the signal $x(n)=\left(\frac{1}{2}\right)^{n} u(n-4)$. Sketch its magnitude and phase response.
(06 Marks)

## OR

8 a. Using the appropriate properties, find the DTFT of the signal $x(n)=\sin \left(\frac{\pi}{4} n\right) \cdot\left(\frac{1}{4}\right)^{n} u(n-1)$.
(08 Marks)
b. State sampling theorem. Determine the Nyquist sampling rate and Nyquist sampling interval for i) $x(t)=1+\cos (2000 \pi t)+\sin (4000 \pi t)$
ii) $x(t)=25 \mathrm{e}^{\mathrm{j} 500 \pi \mathrm{t}}$.
(06 Marks)
c. Evaluate the Fourier transform of the following signals
i) $x(t)=e^{-a t} \cdot u(t) ; a>0$
ii) $x(t)=\delta(t)$. Draw the spectrum.
(06 Marks)

## 17EC42

## Module-5

9 a. List the properties of Region Of Convergence (ROC).
(04 Marks)
b. Determine the Z-transform, the ROC, and the locations of poles and zeros of $x(z)$ for the following signals :
i) $x(n)=-\left(\frac{3}{4}\right)^{n} u(-n-1)+\left(\frac{-1}{3}\right)^{n} u(n)$
ii) $x(n)=n \cdot \sin \left(\frac{\pi}{2} n\right) u(-n)$.
(08 Marks)
c. Find the inverse $Z$ transformation of $X(z)=\frac{1-z^{-1}+z^{-2}}{\left(1-\frac{1}{2} z^{-1}\right)\left(1-2 z^{-1}\right)\left(1-z^{-1}\right)}$ with the following ROCs i) $1<\mid$ z $\mid<2 \quad$ ii) $\frac{1}{2}<\mid$ z $\mid<1$.
(08 Marks)
OR
10 a. State and prove the 'differentiation in z-domain' property of z-transform.
(04 Marks)
b. Find the transfer function and impulse response of a causal LTI system if the input to the system is $x(n)=\left(\frac{1}{3}\right)^{n} u(n) x(n)=\left(\frac{-1}{3}\right)^{n}$ and the output is $y(n)=3(-1)^{n} u(n)+\left(\frac{1}{3}\right)^{n} u(n)$.
(08 Marks)
c. Using power series expansion method, determine inverse z-transform of
i) $\mathrm{X}(\mathrm{z})=\cos \left(\mathrm{z}^{-2}\right) \quad \mathrm{ROC}|\mathrm{z}|>0$
ii) $X(z)=\frac{1}{1-\frac{1}{4} z^{-2}} \quad|z|>\frac{1}{4}$.
(08 Marks)

