sol Engineering 8

c. Let the impulse response of a LTI system be $h(t) = \sigma(t - a)$. Determine the output of this system in response to any input x(t). (04 Marks)

17EC42

OR

4	a.	Convolute $x(t) = u(t) - u(t-2)$ with signal $h(t) = u(t-1) - u(t-3)$.	(10 Marks)
	h		

- b. Convolve $x(n) = \{1, 2, -1, 1\}$ and $h(n) = \{1, 0, 1\}$ using graphical method. (05 Marks)
 - (05 Marks)

Module-3

- 5 a. Determine whether the systems described by the following impulse responses are stable, causal and memoryless i) $h(n) = (\frac{1}{2})^n u(n)$ ii) $h(t) = e^t u (-1 - t)$. (08 Marks)
 - b. State linearity, time shift and convolution properties of Discrete Time Fourier Series. (03 Marks)
 - c. Evaluate the Fourier series representation of the signal $x(t) = sin(2\pi t) + cos(3\pi t)$. Also sketch the magnitude and phase spectra. (09 Marks)

OR

6 a. Consider the interconnection of LTI system depicted in Fig.Q6(a). The impulse response of each system is given by (08 Marks)

$$h_1(n) = u[n], h_2[n] = u[n+2] - u[n], h_3[n] = \delta[n-2], h_4[n] = \alpha^n u[n].$$

$$\lambda [n]$$
 $(h_1(n))$ $(h_2(n))$ $(h_3(n))$ $($

Find the impulse response of the overall system, h[n].

Derive the equation of convolution sum.

c.

- b. Find the unit step response for the LTI system represented by the following responses i) $h(n) = (\frac{1}{2})^n u(n-2)$ ii) $h(t) = e^{-|t|}$.
- c. Find the DTFS representation for $x(n) = \left(\frac{\pi n}{8} + \phi\right)$. Draw magnitude and phase. (08 Marks)

Module-4

- 7 a. State and prove the following properties of Discrete Time Fourier transform.
 - i) Time shift propertyii) Parseval's theorem.

(08 Marks)

(04 Marks)

- b. Determine the time domain signal x(t) corresponding to $X(j\omega) = \frac{j\omega + 1}{(j\omega + 2)^2}$. (06 Marks)
- c. Evaluate the DTFT of the signal $x(n) = (\frac{1}{2})^n u(n 4)$. Sketch its magnitude and phase response. (06 Marks)

OR

- 8 a. Using the appropriate properties, find the DTFT of the signal $x(n) = sin\left(\frac{\pi}{4}n\right)\left(\frac{1}{4}\right) u(n-1)$. (08 Marks)
 - b. State sampling theorem. Determine the Nyquist sampling rate and Nyquist sampling interval for i) $x(t) = 1 + \cos(2000\pi t) + \sin(4000\pi t)$ ii) $x(t) = 25e^{j500\pi t}$. (06 Marks)
 - c. Evaluate the Fourier transform of the following signals i) $x(t) = e^{-at} u(t)$; a > 0 ii) $x(t) = \delta(t)$. Draw the spectrum. 2 of 3 (06 Marks)

Module-5

- a. List the properties of Region Of Convergence (ROC). 9 (04 Marks)
 - b. Determine the Z-transform, the ROC, and the locations of poles and zeros of x(z) for the following signals :

i)
$$x(n) = -\left(\frac{3}{4}\right)^n u(-n-1) + \left(\frac{-1}{3}\right)^n u(n)$$

ii)
$$x(n) = n.\sin\left(\frac{\pi}{2}n\right)u(-n).$$

(08 Marks)

 $(1-2z^{-1})(1-z^{-1})$ with the following c. Find the inverse Z transformation of X(z) =1 ROCs i) 1 < |z| < 2

(08 Marks)

OR

State and prove the 'differentiation in z-domain' property of z-transform. 10 a. (04 Marks) b. Find the transfer function and impulse response of a causal LTI system if the input to the

system is
$$x(n) = \left(\frac{1}{3}\right)^n u(n) \ x(n) = \left(\frac{-1}{3}\right)^n$$
 and the output is $y(n) = 3(-1)^n u(n) + \left(\frac{1}{3}\right)^n u(n)$.
(08 Marks)

c. Using power series expansion method, determine inverse z-transform of

|z| < 1

ii) 🖞

i)
$$X(z) = \cos(z^{-2})$$
 ROC $|z| > 0$
ii) $X(z) = \frac{1}{1}$ $|z| > \frac{1}{4}$.

(08 Marks)